
 

International Journal of Advanced Engineering Research and 

Science (IJAERS) 

Peer-Reviewed Journal 

ISSN: 2349-6495(P) | 2456-1908(O) 

Vol-8, Issue-8; Aug, 2021 
Journal Home Page Available: https://ijaers.com/ 

Article DOI: https://dx.doi.org/10.22161/ijaers.88.29  

 

www.ijaers.com                                                                                                                                                                            Page | 238  

A Review of Remote Sensing Applications on Very High-

Resolution Imagery Using Deep Learning-Based Semantic 

Segmentation Techniques 
Philipe Borba1,2, Edilson de Souza Bias2, Nilton Correia da Silva3, Henrique Llacer Roig2 

 
1Brazilian Army Geographic Service, Brazil 
2Geosciences Institute, University of Brasília, Brazil 
3Campus Gama, University of Brasília, Brazil 

 
Received: 07 Jul 2021,  

Received in revised form: 05 Aug 2021,  

Accepted: 12 Aug 2021,  

Available online: 22 Aug 2021 

©2021 The Author(s). Published by AI 

Publication. This is an open-access article 

under the CC BY license 

(https://creativecommons.org/licenses/by/4.0/). 

Keywords—Remote Sensing, Deep Learning, 

Semantic Segmentation, Convolutional 

Neural Networks, State-of-the-art, Review. 

 

Abstract—Semantic Segmentation is a technique in Computer Sciences 

(CS) to extract information from images. Recent advances in Artificial 

Intelligence, particularly in Deep Learning, Semantic Segmentation 

combined with techniques such as convolutional neural networks, have 

presented better results and exciting results. Due to its power and better 

results than classical approaches, there has been an increase in research 

articles in Remote Sensing that propose using deep learning-based 

semantic Segmentation to extract information from satellite or airborne 

imagery. In this paper, we surveyed the state-of-the-art of Semantic 

Segmentation in Remote Sensing from 2010 until 2020 by identifying the 

research topics and the number of publications and citations. 

Furthermore, we also pointed out the fundamental algorithms, the main 

convolutional neural network architectures, backbones, and the most used 

evaluation metrics. In addition, some datasets were highlighted, as well as 

some frameworks that can be used to train semantic segmentation deep 

neural networks. Finally, we have shown some applications of the 

showcased techniques and concluded the paper by pointing out some 

research opportunities of Remote Sensing Semantic Segmentation, 

concerning some bleeding-edge scientific papers published in 2020 in CS. 

 
I. INTRODUCTION 

The extraction of information from remote sensing images 

has been an active research field, with essential 

applications for urban planning, urban dynamics modeling, 

and disaster damage assessment. Semantic Segmentation is 

the process of assigning a label to each pixel of an image 

and decompose a scene into semantically meaningful 

regions [1]. Traditionally, semantic Segmentation is 

performed either pixel-wise or with object-based 

approaches. The latter is known as Geographic Object-

Based Image Analysis (GEOBIA) [2] and usually 

outperforms the former. These approaches typically 

consist of two separate steps: Segmentation followed by 

classification. Because the second step’s accuracy usually 

relies on the first step’s quality, image segmentation is 

critical for GEOBIA. 

However, image segmentation is not a trivial task, 

given that most algorithms rely on subjective and arbitrary 

parameters setting. The incorrect choice of parameters may 

lead to undesired results, such as under-segmentation and 

over-segmentation, which may impact the classification 

accuracy. Moreover, segmentation techniques’ 

generalization capability is limited because they cannot 

deal with the objects’ complexity present in an image. For 

example, a given set of parameters can provide good 

segmentation results at homogeneous regions (e.g., 

agricultural fields) and unsatisfactory results in 

heterogeneous areas like urban environments. 
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Thus, image analysts usually try several parameter 

combinations to achieve a suitable outcome for an entire 

scene, a time-consuming task. Adaptive segmentation 

algorithms were proposed to deal with the diversity of 

image objects [3, 4] or automatic tuning of segmentation 

parameters [5, 6]. However, these methods are complex, 

rely on human-made reference images, and are designed 

for specific applications. 

Recently, improvements in computation power and 

parallel processing algorithms using graphics processing 

units (GPUs) favored the development of deep learning 

(DL) [7, 8], particularly convolutional neural networks 

(CNNs), a type of DL method introduced by [9], have 

become exceedingly popular for classification, object 

localization, and semantic segmentation of remote sensing 

images [10]. CNNs are designed to automatically extract 

spatial patterns (e.g., shapes, edges, texture) of images 

using a set of convolutions and pooling operations, hence 

learning object-specific characteristics in an end-to-end 

fashion. 

Particularly in the context of semantic Segmentation, 

neural networks have achieved outstanding results [11, 12, 

13, 14, 15, 16, 17, 18]. Unlike traditional pixel-wise 

classification, semantic Segmentation using CNNs can 

preserve the object boundaries producing sharp, fine-scale 

Segmentation. Fully convolutional networks (FCNs) were 

the first approach that employed deep networks for 

semantic Segmentation. The rationale behind FCNs relies 

on transforming the fully connected layers into upsampling 

or transposed convolutional layers [19] to perform dense 

pixel predictions. The pioneering work of [19] adapted 

well-known CNNs models such as AlexNet for semantic 

segmentation tasks. 

In semantic Segmentation, the smallest segment can be 

a single pixel, which is not adequate for most applications 

of information extraction using high-resolution remote 

sensing images because, in these images, it is improbable 

to find a target with the dimensions of a single pixel. To 

overcome this problem, instance segmentation combined 

object detection and semantic segmentation can be used to 

classify an object at the pixel level and outline its exact 

shape [20]. Both semantic Segmentation and instance 

segmentation networks provide the opportunity to 

simultaneously detect and classify building footprints 

without the need for a previous segmentation step, thus 

vanquishing the limitations of GEOBIA. 

This paper will cover the latest state-of-the-art (SOTA) 

of semantic Segmentation in very high-resolution remote 

sensing, focusing only on methods that use convolutional 

neural networks (CNNs). We also want to identify 

research opportunities in RS by briefly analyzing the latest 

trends on CS. To fulfill this goal, this review is organized 

as follows: in section 2, we show the SOTA of semantic 

Segmentation in RS and CS papers; in section 3, we cover 

the basic concepts of DL and semantic segmentation 

techniques, the primary neural network architectures, the 

available datasets and frameworks and finally some raster 

to vector methods; and in section 4 we sum up the 

concepts presented in this paper, as well as cover the 

opportunities of research in geosciences based on the 

comparison of the SOTA semantic segmentation methods. 

 

II. LITERATURE REVIEW 

We conducted a literature review on remote sensing to 

identify the most relevant deep learning techniques and 

methods employed to extract information from remote 

sensing imagery, presented in section 2.1. 

Moreover, to identify possible new techniques from 

computer sciences, we carried out a brief literature survey 

on review articles and also pointed out the best results on 

popular benchmarks showcased on Papers With Code [21], 

shown in section 2.2. 

2.1. Literature Review on Remote Sensing 

To perform our literature review, we searched the 

knowledge database SciELO Citation Index (Web of 

Science) to investigate further what are the main research 

topics, the number of publications per year, and the most 

cited papers. This information was used to try to delineate 

the most relevant papers so that we could further analyze 

them so that we could extract more helpful information, 

such as the most popular methods employed. 

The term” Semantic Segmentation” was searched using 

the time range 2010-2020 as the filter, and there were 

10,145 results, then were filtered once more, considering 

only the” Remote Sensing” field, yielding 718 results. To 

identify the main research topics, we built a word cloud, 

shown in figure 1, with the keywords of these results. 

Analyzing the picture, we can infer that the research 

conducted from 2010 until 2020 has used neural networks, 

particularly convolutional neural networks (CNNs), to 

extract or identify features using high-resolution satellite 

or aerial imagery. Common ground features extracted by 

the considered papers are roads and buildings. 

http://www.ijaers.com/
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Fig. 1: Word cloud built with the keywords of the 

results of the search Semantic Segmentation on the Web of 

Science database, from 2010 to 2020, considering only 

papers in Remote Sensing. Larger words mean more 

recurring terms in the research papers’ keywords. 

 

During the considered time range, there has been a 

nearly exponential growth in the number of papers in 

remote sensing that covers semantic Segmentation that can 

be visualized in figure 2. The years 2015 and 2016 have 

presented a slight increase in the number of publications 

that might be a consequence of the papers published in CS, 

such as [22, 23, 24]. From 2017 until 2019, there has been 

a significant increase in the number of research papers, 

peaking at 140 in 2019. Since 2020 is not over yet, we can 

expect an even more substantial number than 2019, since 

the number of research papers published in 2020 is much 

higher than 2018’s and only 40% smaller than2019’s. 

 

Fig. 2: Number of publications in Remote Sensing with the 

subject Semantic Segmentation from 2010 to 2020 

registered on Web of Science. 

 

We further narrowed our chosen papers by cross-

referencing our search results with data from a GitHub 

repository (https://github.com/thho/DLinEO_review), 

which is under the license CC-BY-4.0 and contains data 

used in [1, 25]. Using this info, we have only considered 

semantic Segmentation, resulting in 261 papers to analyze. 

Then, we built the graph in figure 3 to find out the most 

popular architecture. We concluded that the most famous 

architecture in RS papers is the U-Net, followed by custom 

architectures and then Fully Convolutional Networks 

(FCNs). 

 

Fig. 3: Papers grouped by architecture family. 

 

Then, to evaluate the backbone usage, we built a word 

cloud shown in figure 4 to find out the most popular 

backbones, and we found out that ResNets, VGG-16, and 

the Inception series are very popular. 

 

Fig. 4: Family architectures used in Semantic 

Segmentation papers in Remote Sensing in the considered 

papers. Larger names represent more popular family 

architecture. 
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To understand the relationship between the backbones 

and the architectures chosen in each paper and presented in 

the data here analyzed, we built a tree map shown in figure 

5, which leads us to conclude that U-Nets with custom and 

ResNet backbones are very popular, followed by custom 

backbone and custom architecture, then by VGG-16 

backbone with FCN architecture, and finally, VGG-16 

backbone with SegNet architecture. 

2.2. Brief Literature Review on Computer Science 

There are several review articles in Computer Sciences 

[26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 

41, 42] that portray the evolution of deep learning-based 

semantic segmentation methods. Common research fields 

on CS that use the mentioned techniques are research on 

self-driving vehicles [43, 44], pedestrian detection [45, 46] 

and computer aided diagnosis using medical images [47, 

48]. 

The surveyed papers cover similar architectures and 

backbones already listed on 2.1. The novel backbones that 

were not identified in section 2.1 are the ones from the 

EfficientNet family, ResNeSt [49], and SE-ResNet family 

[50]. The training datasets used in CS applications are one 

of the main differences from RS studies. As examples of 

common datasets used in CS, we can cite the Cityscapes 

dataset [51], the PASCAL VOC (PASCAL Visual Object 

Classes Challenge) [52], and its extension, the PASCAL 

Context [39]. 

There is a platform called Papers With Code [21] that 

gathers results of several papers, as well as codes that are 

available online to reproduce such study considered 

papers. On this website, the results of each benchmark are 

ranked, and the best models are presented. Some of the 

models with the best results on the previously mentioned 

datasets are shown in table 1: 

Table 1: Best models on some available datasets, 

according to Papers With Code [21]. 

Dataset Best Model Paper Title mIoU 

Cityscapes 

test 

HRNet-OCR Hierarchical 

MultiScale 

Attention for 

Semantic 

Segmentation [53] 

85.1% 

PASCAL 

VOC 

2012 test 

EfficientNet- 

L2+NAS-FPN 

Rethinking 

Pretraining and 

Self- 

training [54] 

90.5% 

PASCAL 

Context 

Channelized 

Axial Attention 

(CAA) with 

Simple decoder 

(Efficientnet-B7) 

Channelized Axial 

Attention for 

Semantic 

Segmentation 

[55] 

60.5% 

Cityscapes 

val 

HRNetV2- 

OCR+PSA 

Polarized 

SelfAttention: 

Towards High-

quality Pixelwise 

Regression 

[56] 

86.95% 

Other worth mentioning techniques found on the cited 

review papers and the research shown in table 1 are self-

training [57], Channelized Axial Attention [55], and 

 

Fig 5: Tree Map representing the backbone distribution for each type of convolutional neural network architecture 

used in the considered papers. 
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Polarized Self-Attention [56]. 

 

III. MAIN CONCEPTS AND METHODOLOGIES IN 

SEMANTIC SEGMENTATION 

From the SOTA review carried out in section 2, we 

identified some of the main concepts and techniques that 

we need to understand when studying semantic 

segmentation techniques applied to remote sensing. 

Furthermore, considering the selected papers and 

regarding the ideas highlighted in the SOTA review, we 

will present some basic concepts in section 3.1, some 

training improving techniques in section 3.2, the main 

convolutional neural network backbones in section 3.3, the 

main architectures on section 3.4, some applications on RS 

and examples of some available datasets on section 3.5, 

and finally, some frameworks and tools on section 3.6. 

3.1. Main Concepts of Convolutional Neural Networks 

The convolution layer is one of the building blocks of 

Deep Learning. It can be defined as a combination of 

linear and nonlinear operations such as convolution and 

activation functions [58]. 

Convolution is a mathematical operation that applies an 

array of numbers (kernel) to the input, enabling feature 

extraction operations [58]. On the other hand, the 

activation function is a mathematical resource to introduce 

nonlinearities in the convolutional neural networks. Some 

examples of them are the sigmoid function, the hyperbolic 

tangent function, the rectified linear unit (ReLU) [58], the 

leaky rectified linear unit (Leaky ReLU) [59], the 

exponential linear unit (ELU) [60], the scaled exponential 

linear unit (SELU) [61], the gaussian error linear unit 

(GELU) [62], the Mish [63] and the Softmax [64]. Their 

mathematical definitions can be seen, respectively, on 

equations 1, 2, 3, 4, 5, 6, 7, 8, and 9. It is worth mentioning 

that Softmax is often used as an output function on 

convolutional neural networks. 

 (1) 

  (2) 

  (3) 

(4) 

(5) 

 

 (6) 

(7) 

           (8) 

 (9) 

The difference between filters that use convolutions 

(common in image processing tasks) and the convolutional 

layers of CNNs is that, instead of applying a pre-

determined kernel to the input, it learns the best parameters 

of the kernel to extract features due to the training process 

[33, 39, 34]. 

Another critical concept in CNN theory is the pooling 

layer, which replaces a small neighborhood of a feature 

map with some statistical information, such as mean or 

max [39]. This process is vital because it sub-samples 

images, reducing the dimensionality of the feature maps by 

introducing a translation invariance to small shifts and 

distortions and decreasing the number of learnable 

parameters [58]. 

The combination of convolutional layers, activation 

functions, and pooling operations is usually called 

Convolutional Backbone, and its role is to extract high-

level features [1]. 

Usually, a CNN used to classify an image is composed 

of input, the convolutional backbone, and a classifier head. 

This last one is typically composed of fully connected 

artificial neural networks (ANN), which have several 

perceptrons connected among each other. 

The process of finding the best weights of the neural 

network has two steps: a forward stage and a backward 

stage [27]. According to [27], the first step uses the current 

weights and biases of the network to process the input and 

calculate a prediction. Then this prediction is compared to 

the expected output (ground truth) with a function called 

loss. After determining the loss, the gradients of each 

parameter are updated in the backward stage using the 

chain rule, a method called backpropagation [9]. 

The objective of the training process is to minimize the 

loss function, which means that the outputs of the trained 

neural networks are similar to the ground truth. To carry 

out the training, the weights of the neural network need to 

be initialized, and the way they are set can impact the 

training time. 
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According to [65], two popular initialization methods are 

Glorot (a.k.a. Xavier initialization) [66] and He (a.k.a. 

Kaiming initialization) [67]: the first has as its primary 

goal achieve faster convergence and better accuracy by 

scaling the neural network weights so that the variance of 

the input is equal to the conflict of the output [65]; the 

second aims to achieve depth independent performance by 

modifying the scaling factor to account rectifier 

nonlinearities [65]. The weights of a neural network can 

also be initialized from a previously trained network, a 

technique that is known as transfer learning. [68] defines 

four types of transfer learning: instance-based, mapping-

based, network-based, and adversarial-based. 

To achieve convergence faster during the training process, 

some algorithms with adaptative learning rates can be 

used. In neural networks studies, these algorithms are 

usually gradient-based and are called optimizers [69]. 

Some examples of them are Stochastic Gradient Descend 

(SGD) [70], AdaGrad [71], Nesterov Accelerated Gradient 

(NAG) [72], Adaptative Moment Estimation (Adam) [73], 

Rectified Adam (RAdam) [74], Adaptative and Momental 

Bound (AdaMod) [75] and Adaptative Second Order 

(AdaHessian) [76]. 

Regarding loss functions, [77] summarizes some of the 

available ones that are usually chosen for semantic 

segmentation tasks. Among those, it is worth mentioning 

the ones that are commonly used in semantic segmentation 

papers: the Cross-Entropy (CE) [78], the Weighted Cross-

Entropy (WCE) [79], the Dice [80], the IoU/Jaccard [81], 

the Tversky [82] and the Focal Tversky [83]. The 

mathematical formulation of each cited loss function is 

described respectively in the equations 10, 11, 12, 13, 14, 

and 15, where N is the number of pixels, gi
c is the binary 

indicator of whether the class label c is correctly classified 

for pixel i, sc
i is the corresponding predicted probability, α 

and β are hyperparameters used to control the balance 

between false positives and false negatives, and γ is a 

coefficient in the interval [1,3]. 

Some metrics can be used to evaluate the quality of the 

trained neural networks. According to [84], overall 

accuracy (OA), precision, recall, and the F1 index are 

helpful for evaluating the quality of the training, and they 

are defined by the following equations: 

                   (16) 

                             (17) 

                      (18) 

            (19) 

where TP, TN, FP, and FN are, respectively, the true 

positives, the true negatives, the false positives, and the 

false negatives. 

According to [31], the Jaccard Index, also known as 

intersection over union (IoU), can be defined by: 

                         (20) 

where A e B are, respectively, the ground truth and the 

predicted data. 

                                                          (10) 

                                                   (11) 

                                     (12) 

                                             (13) 

           (14) 

                                                            (15) 
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Also, according to [31], the mean intersection over 

union index (mIoU) can be defined by: 

  (21) 

where m is the number of expected classes, Apred is the 

prediction set, and Atrue is the ground truth set. 

3.2. Convolutional Neural Networks Training 

Improving Techniques 

Convolutional Neural Networks usually take a long time to 

train, even when using a GPU. This occurs due to the fact 

of the large number of weights that have to be adjusted in 

the process of backpropagation: the larger the number of 

parameters of the model, the longer it will take to train. 

This can be overcome using distributed training on several 

GPUs and increasing the batch size. 

In addition, the time spent on the training process also 

depends on the number of samples that the training dataset 

has. On the one hand, if there are not enough images on 

the training dataset, the neural network will not” see” a 

significant number of patterns to learn and perform poorly 

on the training dataset. This below-average learning is 

known as underfitting. On the other hand, if the number of 

images is not high enough, the neural network can 

memorize the data and perform well on the training 

dataset, but poorly on the test dataset, known as overfit 

[64, 85]. 

Moreover, the performance on test datasets can be 

improved by using regularization techniques, which are 

defined by [64] as any modification made to a learning 

algorithm that is intended to reduce its generalization error 

but not its training error. Some examples of regularization 

techniques are weight decay, label smoothing, early 

stopping, dropout, batch normalization, and data 

augmentation. Each of these is described below: 

• Weight decay (a.k.a. L2 Regularization) is a 

method that modifies the weights of a neural 

network in such a way that the loss to be minimized 

is added a penalty of the L2 norm of the weights [64]. 

• Label smoothing [86, 64] is a technique that adds 

noise to the label, mitigating the effect of some 

incorrect label that the dataset may have. It also has 

the advantage of preventing the pursuit of hard 

probabilities without discouraging correct 

classification [64]. 

• Early stopping consists of stopping the training 

when the neural network stops learning, in other 

words, when the validation metrics stop improving 

[64]. 

• Dropout [87] is a technique used to reduce the 

dependency of some neurons on neural networks. At 

each training step, it is calculated a probability of the 

neuron to be shut down, and if it is larger than the 

set threshold, this element is turned off (outputs 

zero). This has a regularizing effect since it forces 

the network to learn patterns with other connected 

neurons. 

• Batch Normalization [88] is a model 

reparameterization technique that introduces both 

additive and multiplicative noise on the hidden units 

at training time by normalizing the inputs to outputs 

with zero mean and unit variance [64]. 

• Data augmentation is a technique that uses image 

manipulation to create new training samples [64, 

89]. Common data augmentation operations are 

random crop, random flip, and random color jitters. 

Furthermore, a novel data augmentation technique 

that has been recently employed in CS papers is 

Mixup [90], which consists of building synthetic 

images composed of a weighted sum of random 

pairs of the training data. According to [64, 89], data 

augmentation also has a regularizing effect, and it 

may contribute to avoid overfitting. One step further 

on data augmentation is using self-supervised 

techniques to learn from data the augmentation 

procedures that can achieve better metrics. As 

examples of such methods, we can cite 

AutoAugment [91], Faster AutoAugment [92], and 

RandAugment [93]. 

Furthermore, there is another approach to training 

optimization, which is the usage of Learning Rate 

Scheduling [94]. This technique changes the value of the 

learning rate according to some heuristic to try to improve 

the neural network accuracy and reduce training time [95, 

96]. Some examples are Time Based Exponential Decay 

[97], Exponential Decay [98], Linear Warmup, Cosine 

Annealing [96], Cosine Power Annealing [99], and One-

Cycle Learning Rate Scheduling Policy [100]. 

Finally, the last training improving technique that we 

will cover is Stochastic Weight Averaging (SWA) [101, 

102], which is a procedure used to optimize the neural 

network that averages multiple points along the trajectory 

of Stochastic Gradient Descent (SGD), with specific 

learning rate procedures, that can be either cyclical or 

constant. The usage of this technique can help the 

optimizer to find a better optimization landscape, which 

might lead to better optimization results. 

3.3. Main Convolutional Neural Network Backbones 

used on Semantic Segmentation Tasks 
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In this subsection, we will briefly present the key ideas 

regarding the main convolutional neural networks used to 

perform semantic segmentation tasks in RS. From our 

bibliographic research carried out in 2.1, we analyzed the 

results shown in figures 3 and 5, and then we identified 

key backbones to be explained in this section. The chosen 

backbones were AlexNet [22], ZFNet [23], GoogLeNet 

[24], VGG-19 [24], the ResNet family [103], Inception 

[86, 104], XCeption [105] and MobileNet [106, 107, 108]. 

From the bibliographic research done in Computer 

Sciences, we came across the following worth mentioning 

backbones: ResNeXt, ResNeSt, and EfficientNet. 

According to [1, 109], convolutional neural networks 

(CNNs) were introduced by [9] and in 2012, [110] used 

them in a model called AlexNet to win the ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC) [22]. 

According to [8], in 2013 and 2014, ILSVRC were also 

won by CNNs, with models respectively called ZFNet 

[23], GoogLeNet [24]. [1] define the architectures AlexNet 

[110], ZFNet [23] and VGG-19 [24] as Vintage 

Architectures. 

In 2015, the family of architectures called ResNets 

[103] introduced skip connections to address the 

vanishing/exploding gradient [66, 111], which prevented 

deep neural networks from having a large number of 

layers. Due to this idea, deeper models were possible, and 

then the 2015’s ILSVRC was won by a ResNet-152. The 

ResNet family has the ResNet blocks as its basic building 

blocks, a series of convolutions and activations stacked. 

There is a concatenation operation by the end of the block 

(also called skip connections) to preserve some of the 

input information. 

To further push the boundary regarding the 

performance of the ResNet family-based algorithms, [86, 

104] developed a family of architectures called Inception, 

which has as its basic block the inception block. Different 

from ResNet blocks that only concatenate the input of the 

block with the output, the inception block has several 

outputs: each output is the result of a different stacking of 

convolutions and pooling operations. Further advances on 

such idea were also proposed by the XCeption family 

[105] and the MobileNet family [106]. 

Thus, [112] evolved the idea of the Inception Block by 

proposing a backbone called ResNeXt: in this method, a 

cardinality value to the blocks is proposed, which widens 

the block with more branches of stacked convolutions, 

enabling further representation learning. Other backbone 

architectures that are worth mentioning are the SE-ResNet 

[50] and the ResNeSt [49]. The first method proposes the 

usage of an attention mechanism at the beginning and the 

end of the ResNet block, composing the Squeeze and 

Excite block, which performs dynamic channel-wise 

feature recalibration, to improve the representational 

power of the network. The latter method proposes the 

usage of Split-Attention Block, which adds the same idea 

of cardinality to the SE-Net-Block proposed by [50]. 

Recently there have been some breakthrough 

architectures using Neural Architecture Search (NAS) 

[113, 114, 115], which is a reinforcement learning 

technique to find out the best architecture to perform tasks 

on object detection and semantic segmentation [1]. Using 

NAS techniques, in late 2019, researchers at Google have 

created a series of backbones called EfficientNet [116]. In 

2020, another group from Google had published a paper 

called EfficientDet: Scalable and Efficient Object 

Detection [117], in which they improved EfficientNets and 

proposed a weighted bi-directional feature pyramid 

network (BiFPN). According to [117], with these 

improvements, the research team achieved 4x smaller 

networks that used 13x fewer FLOPs, with a gain of 0.2% 

of mean average precision (mAP) of state-of-the-art mAP 

on the COCO dataset. 

3.4. Main Convolutional Neural Network Architectures 

Used on Semantic Segmentation Tasks 

In neural network applications, the convolutional 

backbone is often combined with other structures 

depending on the task that we want to perform. It can be 

used with a design such as fully convolutional layers to 

perform classification. In the case of semantic 

Segmentation, there are some approaches, as using naïve 

encoders and encoder-decoder structures [1]. There are 

also Generative Adversarial Networks (GAN) [39, 118, 

119] and Recurrent Neural Networks (RNNs) with Long 

Short-Term Memory (LSTM) [30] approaches to perform 

semantic segmentation tasks, but we will not cover those 

techniques in this paper. More information on those 

techniques can be found on [1, 30, 42]. 

Naïve decoders normally use a convolutional backbone 

and trained deconvolutional layers to perform the 

upsampling task to generate the segmentation mask, 

combined with some interpolation method such as bilinear. 

Some examples of this type of architecture are Fully 

Convolutional Networks (FCN) [120], DeepLabV1 [121], 

DeepLabV2 [122], ParseNet [123], PSPNet [124] and 

DeepLabV3 [125]. 

Encoder-decoder models, in contrast to naïve decoder, 

instead of using an interpolation method to upsample the 

feature maps, use a more complex decoder, with shortcuts 

or skip connections to maintain information from the 

encoder to the decoder and gradually perform the 

upsampling [1]. Some examples of this type of model are 

the DeconvNet [126], the SegNet [127], the U-Net [79], 
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the U-Net++ [128], the DoubleU-Net [129], the 

MultiResUNet [130], the RefineNet [131] and the 

DeepLabV3+ [132]. The architecture of an encoder-

decoder architecture called U-Net is shown in figure 6. 

A novel type of encoder-decoder architecture is the 

HRNet (or High-Resolution Net) [133] and the HR-Net 

OCR[53], both of which are featured on top positions of 

the Cityscapes benchmark, as shown in table 1. This 

method aims to maintain high-resolution images at every 

stage of the process by combining different parallel chains 

of convolutions and strided convolutions. Object-

Contextual Representations (OCR) is an attention 

mechanism [134] that considers the context of the 

considered pixel instead of it alone. OCR can be combined 

with different backbones such as ResNet-101 and 

Xception and different architectures such as DeepLabV3+ 

to improve segmentation results, as shown by [135]. When 

OCR is combined with HR-Net, we have the HR-Net OCR 

architecture. 

Another type of attention mechanism that can be 

combined with HR-Net is the Polarized Self-Attention 

(PSA) [56], which has two main operations in its design: 

the polarized filtering and enhancement component. This 

type of attention mechanism not only looks at spatial 

features but also channel representations. 

Finally, another worth mentioning set of techniques is 

the usage of EfficientNet backbones with Feature Pyramid 

Networks (FPN), combined with self-training techniques 

such as noisy student, which is a semi-supervised learning 

technique that improves the training results [57]. Table 1 

shows that the best method on PASCAL VOC 2012 test 

dataset is the usage of EfficientNet trained with noisy 

student technique (a.k.a. EfficientNet-L2) with FPN 

architecture and Neural Architecture Search (NAS) [54]. 

On the other hand, the best model on PASCAL Context is 

the combination of a plain EfficientNet-B7 with an 

attention mechanism called Channelized Axial Attention 

(CAA) [55]. 

3.5. Applications on Remote Sensing and Examples of 

Available Datasets 

Deep Learning (DL) plays an important role in nowadays 

science is particularly geosciences. There are several RS 

research papers such as [136], [137], and [138] that 

compare classical computer vision techniques to DL 

techniques, and they show that DL can achieve better 

accuracies. 

DL-based techniques can solve several problems in 

Geosciences. Among those problems we can cite object 

detection [139, 140], hyperspectral image classification 

[10, 141], super-resolution [142, 143, 144], change 

detection [145, 146] and semantic segmentation. 

Regarding Semantic Segmentation [84, 147, 148, 149], 

there are some use cases, such as building footprint 

extraction [11, 12, 150, 13, 14, 15, 16, 17, 18], road 

extraction [151, 152, 153] and land use and land cover 

(LULC) analysis [154, 155]. 

To train neural networks that can solve LULC 

problems, data from the ISPRS Potsdam and Vaihingen 

[156, 157] can be used. This is a dataset with airborne 

photogrammetric imagery of Potsdam, covering six classes 

(impervious surfaces, building, low vegetation, tree, car, 

and clutter/background). 

Moreover, to perform training of deep convolutional 

neural networks that can extract building footprints, some 

of the open datasets available online are listed below, and 

the details are shown in table 2: 

• SpaceNet [158, 159]: dataset with satellite 

imagery of the following cities: Rio de Janeiro, Las 

Vegas, Paris, Khartoum, and Shanghai. 

• Massachusetts [160]: dataset with satellite 

imagery of the city of Boston. 

• WHU building [161]: dataset with airborne 

photogrammetric imagery of New Zealand. 

• INRIA aerial [162]: dataset with satellite imagery 

from the following cities: Austin, Chicago, Kitsap 

County, Western Tyrol, and Vienna. 

• LandCover.ai [163]: dataset with satellite imagery 

of Poland. 

• AIRS [164]: dataset with satellite imagery of 

Christchurch City in New Zealand. 

• CrowdAI [165]: a simplified version of the 

SpaceNet Dataset, with only RGB images. 
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Table 2: Comparison between building footprint datasets 

Dataset # of 

buildings 

# of tiles Tile Size Spatial 

Resolution 

LandCover.ai 12,788 41 33 tiles 

with the 

size 9000 x 

9500 px 

and eight 

tiles with 

size 

4200 x 

4700 

px 

25cm and 

50 cm 

INRIA 216,418 360 5000 x 

5000 

px 

30 cm 

Massachusetts 

Buildings 

310,425 151 1500 x 

1500 

px 

1 m 

Spacenet 462,091 17,533 512 x 512 

px 

35 cm 

WHU build- 

ing dataset 

220,000 25,577 512 x 512 

px 

7.5 cm 

and 2.7 

cm 

AIRS 220,000 1,047 10,000

 

x 

10,000 px 

7.5 cm 

CrowdAI Unknown 280,741 

training 

images, 

60,317 

validation 

images 

and 

60,697 

test 

images 

300 x 300 

px 

Unknown 

 

 

3.6. Available Frameworks and Tools 

The two most famous deep learning frameworks are 

Tensorflow [166] and PyTorch [167]. Both are open 

source, have large communities, are very well 

documented, and have outstanding performance. 

Tensorflow has an underlying library called Keras [168], 

enabling a higher level and more readable code. On the 

PyTorch side, PyTorch Lightning [169], FastAI [170], and 

Catalyst [171], among others, are frameworks that provide 

similar improvements given by Keras. 

Considering segmentation models tools openly 

available, there are two frameworks developed in Python 

that use Tensorflow and PyTorch, respectively 

segmentation models [172] and segmentation models 

PyTorch [173]. To train segmentation models without 

coding skills, users can build a JSON file with the 

parameters of the training and use a Python package called 

segmentation models trainer [174], which was built using 

Tensorflow, Keras, and segmentation models. [175] has 

also created a training framework using PyTorch and 

PyTorch Lightning called PyTorch segmentation models 

trainer, which instead of using a JSON to fill the 

hyperparameters, uses a YAML file using configuration 

composition, which enables users to reuse settings. To 

build training masks from vector data, a QGIS [176] 

plugin called DeepLearningTools [177] can be used. 

There are also tools to help to build and to inspect 

datasets, such as FiftyOne [178]. With this tool, data 

scientists can visualize the labels overlapped to the images 

and calculate image similarity indexes to assess the quality 

of the dataset and identify missing labels. 

Concerning data augmentation, each library has built-in 

operations. As external options, we can cite 

Albumentations [179], a Python package that is framework 

Fig. 6: Basic structure of a U-Net. Figure built using https://github.com/HarisIqbal88/PlotNeuralNet. 
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agnostic and works only on CPU. Another option on the 

PyTorch ecosystem is Kornia [180], a package that works 

on either CPU or GPU. 

 

IV. CONCLUSION 

In this paper, we presented the SOTA of Semantic 

Segmentation in Remote Sensing, an ever-growing field of 

research, with an almost exponential increase in the 

number of publications, as shown in section 2.1. We 

identified that the most used backbones on RS tasks are the 

ResNet family, VGG-16, Inception-V3, and AlexNet. 

Furthermore, we identified that the most famous 

architectures used in RS are the U-Net, DeepLabV3+, 

FCN, and SegNet. We also briefly showed the main 

theories, algorithms, and neural networks architectures and 

backbones. 

This paper has also briefly presented how 

convolutional neural networks work and the techniques 

used for training such structures, like weight initialization, 

popular optimizers, some of the loss functions available, 

and the often-used metrics in RS papers. We also showed 

some of the existing regularizing techniques such as 

weight decay, label smoothing, early stopping, dropout, 

batch normalization, and data augmentation. 

Then, we also presented some learning rate scheduling 

methods and stochastic weight averaging. We also listed 

the most famous backbones and architectures found on the 

RS papers surveyed and presented some applications of 

such techniques on RS. We also showed some available 

datasets and popular frameworks and packages to train 

deep learning convolutional neural networks. 

There are many research papers in CS that propose 

several neural architectures, and some have been used in 

RS applications. Deep Learning is an ever-growing field, 

and in 2020 there have been many promising and exciting 

new backbones, such as the EfficientNet family, the 

ResNeSt-269 [49], and the SE-ResNet family [50]. 

Moreover, we have identified a research opportunity in 

RS to combine the mentioned backbones with popular 

architectures such as U-Net, FPNs, and PSPNet. Another 

research opportunity is the usage of HRNet-OCR [53], 

HRNetV2-OCR+PSA [56], EfficientNet-B7+CAA [55], 

and EfficientNet-L2+NAS-FPN [54], which are in the 

leader board of Papers With Code [21], but was not 

observed in the surveyed papers regarding remote sensing 

applications. 

In addition, another research opportunity that we 

identified is to perform an extensive comparison of the 

accuracy of trained models with several combinations of 

neural networks architectures and backbones to define the 

best method to extract information from very-high remote 

sensing images. We can also highlight other research 

opportunities, such as determining the best loss function to 

be used in training and the best inference method to 

improve validation data accuracy. The suggested loss 

function for such a study is the Focal Tversky [83] since it 

handles class imbalance problems, a common problem in 

remote sensing datasets, especially building footprint 

extraction datasets. 

Additionally, even though new optimizers such as 

RAdam, AdaMod, and AdaHessian have been proposed, 

few papers in remote sensing have tested them. The same 

principle can be applied to activation functions such as 

Leaky-ReLU, ELU, SELU, GELU, and Mish. So, we also 

identify research opportunities of the influence of 

optimizers and activation functions in the training time and 

the test metric scores. 

Finally, other aspects that we did not find in the 

surveyed papers and that can be researched is the usage of 

stochastic weight averaging [101, 102], novel 

augmentation techniques such as Mixup [90], 

AutoAugment [91], Faster AutoAugment [92] and 

RandAugment [93]. 
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